(x^3-4x^2+2x+3)/(x-3)

Simple and best practice solution for (x^3-4x^2+2x+3)/(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^3-4x^2+2x+3)/(x-3) equation:


D( x )

x-3 = 0

x-3 = 0

x-3 = 0

x-3 = 0 // + 3

x = 3

x in (-oo:3) U (3:+oo)

(x^3-(4*x^2)+2*x+3)/(x-3) = 0

(x^3-4*x^2+2*x+3)/(x-3) = 0

x^3-4*x^2+2*x+3 = 0

x^3-4*x^2+2*x+3 = 0

{ 1, -1, 3, -3 }

1

x = 1

x^3-4*x^2+2*x+3 = 2

1

-1

x = -1

x^3-4*x^2+2*x+3 = -4

-1

3

x = 3

x^3-4*x^2+2*x+3 = 0

3

x-3

x^2-x-1

x^3-4*x^2+2*x+3

x-3

3*x^2-x^3

2*x-x^2+3

x^2-3*x

3-x

x-3

0

x^2-x-1 = 0

DELTA = (-1)^2-(-1*1*4)

DELTA = 5

DELTA > 0

x = (5^(1/2)+1)/(1*2) or x = (1-5^(1/2))/(1*2)

x = (5^(1/2)+1)/2 or x = (1-5^(1/2))/2

x in { (1-5^(1/2))/2, (5^(1/2)+1)/2, 3}

(x-((1-5^(1/2))/2))*(x-((5^(1/2)+1)/2))*(x-3) = 0

(x-((1-5^(1/2))/2))*(x-((5^(1/2)+1)/2)) = 0

( x-((1-5^(1/2))/2) )

x-((1-5^(1/2))/2) = 0 // + (1-5^(1/2))/2

x = (1-5^(1/2))/2

( x-((5^(1/2)+1)/2) )

x-((5^(1/2)+1)/2) = 0 // + (5^(1/2)+1)/2

x = (5^(1/2)+1)/2

x in { (1-5^(1/2))/2, (5^(1/2)+1)/2 }

See similar equations:

| -8y+6=-9y+4 | | 1/3y+6=8 | | 4x=y+47 | | 500+24y=6x(849) | | 156/t=4/100 | | 14/4 | | 1/3+6=8 | | x^3+5x^2-144=0 | | 6x-84= | | 3x^2-x*10=0 | | 156/4=t/100 | | 64x^2-6=10 | | 8(2+x)=(x+4)7 | | 3(59)=1y | | 3w+2=5(w+3)+5 | | Y=-0.7x-7 | | 121-22u+2u^2=0 | | 6y-7=9y+14 | | H=12t-2t^2 | | 700x+400=y(15) | | (2x+7)(2x-7)=o | | -5g=-8+-9g | | 3y-5x=30 | | 2y^2-4y^3-5y^2+7y^3=0 | | x-4.2=13.3 | | 2x^2-9x=19 | | 2.8=90/d | | z^2+11z-12= | | 2y^2-4y^3-5y^2=7y^3 | | -2(f+4)=12 | | 2.8x=90 | | x-3/10=-3/5 |

Equations solver categories